
Sanic Documentation
Release 0.5.4

Sanic contributors

Aug 04, 2017





Contents

1 Sanic aspires to be simple 3

2 Guides 5
2.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Request Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Static Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Middleware And Listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Blueprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.10 Cookies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.11 Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.12 Class-Based Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.13 Custom Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.14 SSL Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.15 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.16 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.17 Deploying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.18 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.19 Contributing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Module Documentation 33

i



ii



Sanic Documentation, Release 0.5.4

Sanic is a Flask-like Python 3.5+ web server that’s written to go fast. It’s based on the work done by the amazing folks
at magicstack, and was inspired by this article.

On top of being Flask-like, Sanic supports async request handlers. This means you can use the new shiny async/await
syntax from Python 3.5, making your code non-blocking and speedy.

Sanic is developed on GitHub. Contributions are welcome!

Contents 1

https://magic.io/blog/uvloop-blazing-fast-python-networking/
https://github.com/channelcat/sanic/


Sanic Documentation, Release 0.5.4

2 Contents



CHAPTER 1

Sanic aspires to be simple

from sanic import Sanic
from sanic.response import json

app = Sanic()

@app.route("/")
async def test(request):

return json({"hello": "world"})

if __name__ == "__main__":
app.run(host="0.0.0.0", port=8000)

3



Sanic Documentation, Release 0.5.4

4 Chapter 1. Sanic aspires to be simple



CHAPTER 2

Guides

2.1 Getting Started

Make sure you have both pip and at least version 3.5 of Python before starting. Sanic uses the new async/await
syntax, so earlier versions of python won’t work.

1. Install Sanic: python3 -m pip install sanic

2. Create a file called main.py with the following code:

from sanic import Sanic
from sanic.response import text

app = Sanic(__name__)

@app.route("/")
async def test(request):

return text('Hello world!')

app.run(host="0.0.0.0", port=8000, debug=True)

1. Run the server: python3 main.py

2. Open the address http://0.0.0.0:8000 in your web browser. You should see the message Hello world!.

You now have a working Sanic server!

2.2 Routing

Routing allows the user to specify handler functions for different URL endpoints.

A basic route looks like the following, where app is an instance of the Sanic class:

5

https://pip.pypa.io/en/stable/installing/


Sanic Documentation, Release 0.5.4

from sanic.response import json

@app.route("/")
async def test(request):

return json({ "hello": "world" })

When the url http://server.url/ is accessed (the base url of the server), the final / is matched by the router to
the handler function, test, which then returns a JSON object.

Sanic handler functions must be defined using the async def syntax, as they are asynchronous functions.

2.2.1 Request parameters

Sanic comes with a basic router that supports request parameters.

To specify a parameter, surround it with angle quotes like so: <PARAM>. Request parameters will be passed to the
route handler functions as keyword arguments.

from sanic.response import text

@app.route('/tag/<tag>')
async def tag_handler(request, tag):

return text('Tag - {}'.format(tag))

To specify a type for the parameter, add a :type after the parameter name, inside the quotes. If the parameter does
not match the specified type, Sanic will throw a NotFound exception, resulting in a 404: Page not found
error on the URL.

from sanic.response import text

@app.route('/number/<integer_arg:int>')
async def integer_handler(request, integer_arg):

return text('Integer - {}'.format(integer_arg))

@app.route('/number/<number_arg:number>')
async def number_handler(request, number_arg):

return text('Number - {}'.format(number_arg))

@app.route('/person/<name:[A-z]+>')
async def person_handler(request, name):

return text('Person - {}'.format(name))

@app.route('/folder/<folder_id:[A-z0-9]{0,4}>')
async def folder_handler(request, folder_id):

return text('Folder - {}'.format(folder_id))

2.2.2 HTTP request types

By default, a route defined on a URL will be available for only GET requests to that URL. However, the @app.route
decorator accepts an optional parameter, methods, which allows the handler function to work with any of the HTTP
methods in the list.

from sanic.response import text

6 Chapter 2. Guides



Sanic Documentation, Release 0.5.4

@app.route('/post', methods=['POST'])
async def post_handler(request):

return text('POST request - {}'.format(request.json))

@app.route('/get', methods=['GET'])
async def get_handler(request):

return text('GET request - {}'.format(request.args))

There is also an optional host argument (which can be a list or a string). This restricts a route to the host or hosts
provided. If there is a also a route with no host, it will be the default.

@app.route('/get', methods=['GET'], host='example.com')
async def get_handler(request):

return text('GET request - {}'.format(request.args))

# if the host header doesn't match example.com, this route will be used
@app.route('/get', methods=['GET'])
async def get_handler(request):

return text('GET request in default - {}'.format(request.args))

There are also shorthand method decorators:

from sanic.response import text

@app.post('/post')
async def post_handler(request):

return text('POST request - {}'.format(request.json))

@app.get('/get')
async def get_handler(request):

return text('GET request - {}'.format(request.args))

2.2.3 The add_route method

As we have seen, routes are often specified using the @app.route decorator. However, this decorator is really just
a wrapper for the app.add_route method, which is used as follows:

from sanic.response import text

# Define the handler functions
async def handler1(request):

return text('OK')

async def handler2(request, name):
return text('Folder - {}'.format(name))

async def person_handler2(request, name):
return text('Person - {}'.format(name))

# Add each handler function as a route
app.add_route(handler1, '/test')
app.add_route(handler2, '/folder/<name>')
app.add_route(person_handler2, '/person/<name:[A-z]>', methods=['GET'])

2.2. Routing 7



Sanic Documentation, Release 0.5.4

2.2.4 URL building with url_for

Sanic provides a url_for method, to generate URLs based on the handler method name. This is useful if you want
to avoid hardcoding url paths into your app; instead, you can just reference the handler name. For example:

@app.route('/')
async def index(request):

# generate a URL for the endpoint `post_handler`
url = app.url_for('post_handler', post_id=5)
# the URL is `/posts/5`, redirect to it
return redirect(url)

@app.route('/posts/<post_id>')
async def post_handler(request, post_id):

return text('Post - {}'.format(post_id))

Other things to keep in mind when using url_for:

• Keyword arguments passed to url_for that are not request parameters will be included in the URL’s query
string. For example:

url = app.url_for('post_handler', post_id=5, arg_one='one', arg_two='two')
# /posts/5?arg_one=one&arg_two=two

• Multivalue argument can be passed to url_for. For example:

url = app.url_for('post_handler', post_id=5, arg_one=['one', 'two'])
# /posts/5?arg_one=one&arg_one=two

• Also some special arguments (_anchor, _external, _scheme, _method, _server) passed to
url_for will have special url building (_method is not support now and will be ignored). For example:

url = app.url_for('post_handler', post_id=5, arg_one='one', _anchor='anchor')
# /posts/5?arg_one=one#anchor

url = app.url_for('post_handler', post_id=5, arg_one='one', _external=True)
# //server/posts/5?arg_one=one
# _external requires passed argument _server or SERVER_NAME in app.config or url will
→˓be same as no _external

url = app.url_for('post_handler', post_id=5, arg_one='one', _scheme='http', _
→˓external=True)
# http://server/posts/5?arg_one=one
# when specifying _scheme, _external must be True

# you can pass all special arguments one time
url = app.url_for('post_handler', post_id=5, arg_one=['one', 'two'], arg_two=2, _
→˓anchor='anchor', _scheme='http', _external=True, _server='another_server:8888')
# http://another_server:8888/posts/5?arg_one=one&arg_one=two&arg_two=2#anchor

• All valid parameters must be passed to url_for to build a URL. If a parameter is not supplied, or if a parameter
does not match the specified type, a URLBuildError will be thrown.

2.2.5 WebSocket routes

Routes for the WebSocket protocol can be defined with the @app.websocket decorator:

8 Chapter 2. Guides



Sanic Documentation, Release 0.5.4

@app.websocket('/feed')
async def feed(request, ws):

while True:
data = 'hello!'
print('Sending: ' + data)
await ws.send(data)
data = await ws.recv()
print('Received: ' + data)

Alternatively, the app.add_websocket_route method can be used instead of the decorator:

async def feed(request, ws):
pass

app.add_websocket_route(my_websocket_handler, '/feed')

Handlers for a WebSocket route are passed the request as first argument, and a WebSocket protocol object as second
argument. The protocol object has send and recv methods to send and receive data respectively.

WebSocket support requires the websockets package by Aymeric Augustin.

2.3 Request Data

When an endpoint receives a HTTP request, the route function is passed a Request object.

The following variables are accessible as properties on Request objects:

• json (any) - JSON body

from sanic.response import json

@app.route("/json")
def post_json(request):

return json({ "received": True, "message": request.json })

• args (dict) - Query string variables. A query string is the section of a URL that resembles ?
key1=value1&key2=value2. If that URL were to be parsed, the args dictionary would look like
{'key1': ['value1'], 'key2': ['value2']}. The request’s query_string variable holds
the unparsed string value.

from sanic.response import json

@app.route("/query_string")
def query_string(request):

return json({ "parsed": True, "args": request.args, "url": request.url,
→˓"query_string": request.query_string })

• raw_args (dict) - On many cases you would need to access the url arguments in a less packed dictio-
nary. For same previous URL ?key1=value1&key2=value2, the raw_args dictionary would look like
{'key1': 'value1', 'key2': 'value2'}.

• files (dictionary of File objects) - List of files that have a name, body, and type

from sanic.response import json

@app.route("/files")

2.3. Request Data 9

https://github.com/aaugustin/websockets


Sanic Documentation, Release 0.5.4

def post_json(request):
test_file = request.files.get('test')

file_parameters = {
'body': test_file.body,
'name': test_file.name,
'type': test_file.type,

}

return json({ "received": True, "file_names": request.files.keys(), "test_
→˓file_parameters": file_parameters })

• form (dict) - Posted form variables.

from sanic.response import json

@app.route("/form")
def post_json(request):

return json({ "received": True, "form_data": request.form, "test": request.
→˓form.get('test') })

• body (bytes) - Posted raw body. This property allows retrieval of the request’s raw data, regardless of content
type.

from sanic.response import text

@app.route("/users", methods=["POST",])
def create_user(request):

return text("You are trying to create a user with the following POST: %s" %
→˓request.body)

• ip (str) - IP address of the requester.

• app - a reference to the Sanic application object that is handling this request. This is useful when inside
blueprints or other handlers in modules that do not have access to the global app object.

from sanic.response import json
from sanic import Blueprint

bp = Blueprint('my_blueprint')

@bp.route('/')
async def bp_root(request):

if request.app.config['DEBUG']:
return json({'status': 'debug'})

else:
return json({'status': 'production'})

• url: The full URL of the request, ie: http://localhost:8000/posts/1/?foo=bar

• scheme: The URL scheme associated with the request: http or https

• host: The host associated with the request: localhost:8080

• path: The path of the request: /posts/1/

• query_string: The query string of the request: foo=bar or a blank string ''

• uri_template: Template for matching route handler: /posts/<id>/

10 Chapter 2. Guides



Sanic Documentation, Release 0.5.4

2.3.1 Accessing values using get and getlist

The request properties which return a dictionary actually return a subclass of dict called RequestParameters.
The key difference when using this object is the distinction between the get and getlist methods.

• get(key, default=None) operates as normal, except that when the value of the given key is a list, only
the first item is returned.

• getlist(key, default=None) operates as normal, returning the entire list.

from sanic.request import RequestParameters

args = RequestParameters()
args['titles'] = ['Post 1', 'Post 2']

args.get('titles') # => 'Post 1'

args.getlist('titles') # => ['Post 1', 'Post 2']

2.4 Response

Use functions in sanic.response module to create responses.

2.4.1 Plain Text

from sanic import response

@app.route('/text')
def handle_request(request):

return response.text('Hello world!')

2.4.2 HTML

from sanic import response

@app.route('/html')
def handle_request(request):

return response.html('<p>Hello world!</p>')

2.4.3 JSON

from sanic import response

@app.route('/json')
def handle_request(request):

return response.json({'message': 'Hello world!'})

2.4. Response 11



Sanic Documentation, Release 0.5.4

2.4.4 File

from sanic import response

@app.route('/file')
async def handle_request(request):

return await response.file('/srv/www/whatever.png')

2.4.5 Streaming

from sanic import response

@app.route("/streaming")
async def index(request):

async def streaming_fn(response):
response.write('foo')
response.write('bar')

return response.stream(streaming_fn, content_type='text/plain')

2.4.6 Redirect

from sanic import response

@app.route('/redirect')
def handle_request(request):

return response.redirect('/json')

2.4.7 Raw

Response without encoding the body

from sanic import response

@app.route('/raw')
def handle_request(request):

return response.raw('raw data')

2.4.8 Modify headers or status

To modify headers or status code, pass the headers or status argument to those functions:

from sanic import response

@app.route('/json')
def handle_request(request):

return response.json(

12 Chapter 2. Guides



Sanic Documentation, Release 0.5.4

{'message': 'Hello world!'},
headers={'X-Served-By': 'sanic'},
status=200

)

2.5 Static Files

Static files and directories, such as an image file, are served by Sanic when registered with the app.static method.
The method takes an endpoint URL and a filename. The file specified will then be accessible via the given endpoint.

from sanic import Sanic
app = Sanic(__name__)

# Serves files from the static folder to the URL /static
app.static('/static', './static')

# Serves the file /home/ubuntu/test.png when the URL /the_best.png
# is requested
app.static('/the_best.png', '/home/ubuntu/test.png')

app.run(host="0.0.0.0", port=8000)

Note: currently you cannot build a URL for a static file using url_for.

2.6 Exceptions

Exceptions can be thrown from within request handlers and will automatically be handled by Sanic. Exceptions take
a message as their first argument, and can also take a status code to be passed back in the HTTP response.

2.6.1 Throwing an exception

To throw an exception, simply raise the relevant exception from the sanic.exceptions module.

from sanic.exceptions import ServerError

@app.route('/killme')
def i_am_ready_to_die(request):

raise ServerError("Something bad happened", status_code=500)

2.6.2 Handling exceptions

To override Sanic’s default handling of an exception, the @app.exception decorator is used. The decorator expects
a list of exceptions to handle as arguments. You can pass SanicException to catch them all! The decorated
exception handler function must take a Request and Exception object as arguments.

from sanic.response import text
from sanic.exceptions import NotFound

@app.exception(NotFound)

2.5. Static Files 13



Sanic Documentation, Release 0.5.4

def ignore_404s(request, exception):
return text("Yep, I totally found the page: {}".format(request.url))

2.6.3 Useful exceptions

Some of the most useful exceptions are presented below:

• NotFound: called when a suitable route for the request isn’t found.

• ServerError: called when something goes wrong inside the server. This usually occurs if there is an excep-
tion raised in user code.

See the sanic.exceptions module for the full list of exceptions to throw.

2.7 Middleware And Listeners

Middleware are functions which are executed before or after requests to the server. They can be used to modify the
request to or response from user-defined handler functions.

Additionally, Sanic providers listeners which allow you to run code at various points of your application’s lifecycle.

2.7.1 Middleware

There are two types of middleware: request and response. Both are declared using the @app.middleware deco-
rator, with the decorator’s parameter being a string representing its type: 'request' or 'response'. Response
middleware receives both the request and the response as arguments.

The simplest middleware doesn’t modify the request or response at all:

@app.middleware('request')
async def print_on_request(request):

print("I print when a request is received by the server")

@app.middleware('response')
async def print_on_response(request, response):

print("I print when a response is returned by the server")

2.7.2 Modifying the request or response

Middleware can modify the request or response parameter it is given, as long as it does not return it. The following
example shows a practical use-case for this.

app = Sanic(__name__)

@app.middleware('response')
async def custom_banner(request, response):

response.headers["Server"] = "Fake-Server"

@app.middleware('response')
async def prevent_xss(request, response):

response.headers["x-xss-protection"] = "1; mode=block"

app.run(host="0.0.0.0", port=8000)

14 Chapter 2. Guides



Sanic Documentation, Release 0.5.4

The above code will apply the two middleware in order. First, the middleware custom_banner will change the
HTTP response header Server to Fake-Server, and the second middleware prevent_xss will add the HTTP header
for preventing Cross-Site-Scripting (XSS) attacks. These two functions are invoked after a user function returns a
response.

2.7.3 Responding early

If middleware returns a HTTPResponse object, the request will stop processing and the response will be returned.
If this occurs to a request before the relevant user route handler is reached, the handler will never be called. Returning
a response will also prevent any further middleware from running.

@app.middleware('request')
async def halt_request(request):

return text('I halted the request')

@app.middleware('response')
async def halt_response(request, response):

return text('I halted the response')

2.7.4 Listeners

If you want to execute startup/teardown code as your server starts or closes, you can use the following listeners:

• before_server_start

• after_server_start

• before_server_stop

• after_server_stop

These listeners are implemented as decorators on functions which accept the app object as well as the asyncio loop.

For example:

@app.listener('before_server_start')
async def setup_db(app, loop):

app.db = await db_setup()

@app.listener('after_server_start')
async def notify_server_started(app, loop):

print('Server successfully started!')

@app.listener('before_server_stop')
async def notify_server_stopping(app, loop):

print('Server shutting down!')

@app.listener('after_server_stop')
async def close_db(app, loop):

await app.db.close()

If you want to schedule a background task to run after the loop has started, Sanic provides the add_task method to
easily do so.

2.7. Middleware And Listeners 15



Sanic Documentation, Release 0.5.4

async def notify_server_started_after_five_seconds():
await asyncio.sleep(5)
print('Server successfully started!')

app.add_task(notify_server_started_after_five_seconds())

2.8 Blueprints

Blueprints are objects that can be used for sub-routing within an application. Instead of adding routes to the application
instance, blueprints define similar methods for adding routes, which are then registered with the application in a flexible
and pluggable manner.

Blueprints are especially useful for larger applications, where your application logic can be broken down into several
groups or areas of responsibility.

2.8.1 My First Blueprint

The following shows a very simple blueprint that registers a handler-function at the root / of your application.

Suppose you save this file as my_blueprint.py, which can be imported into your main application later.

from sanic.response import json
from sanic import Blueprint

bp = Blueprint('my_blueprint')

@bp.route('/')
async def bp_root(request):

return json({'my': 'blueprint'})

2.8.2 Registering blueprints

Blueprints must be registered with the application.

from sanic import Sanic
from my_blueprint import bp

app = Sanic(__name__)
app.blueprint(bp)

app.run(host='0.0.0.0', port=8000, debug=True)

This will add the blueprint to the application and register any routes defined by that blueprint. In this example, the
registered routes in the app.router will look like:

[Route(handler=<function bp_root at 0x7f908382f9d8>, methods=None, pattern=re.compile(
→˓'^/$'), parameters=[])]

2.8.3 Using blueprints

Blueprints have much the same functionality as an application instance.

16 Chapter 2. Guides



Sanic Documentation, Release 0.5.4

WebSocket routes

WebSocket handlers can be registered on a blueprint using the @bp.websocket decorator or bp.
add_websocket_route method.

Middleware

Using blueprints allows you to also register middleware globally.

@bp.middleware
async def print_on_request(request):

print("I am a spy")

@bp.middleware('request')
async def halt_request(request):

return text('I halted the request')

@bp.middleware('response')
async def halt_response(request, response):

return text('I halted the response')

Exceptions

Exceptions can be applied exclusively to blueprints globally.

@bp.exception(NotFound)
def ignore_404s(request, exception):

return text("Yep, I totally found the page: {}".format(request.url))

Static files

Static files can be served globally, under the blueprint prefix.

bp.static('/folder/to/serve', '/web/path')

2.8.4 Start and stop

Blueprints can run functions during the start and stop process of the server. If running in multiprocessor mode (more
than 1 worker), these are triggered after the workers fork.

Available events are:

• before_server_start: Executed before the server begins to accept connections

• after_server_start: Executed after the server begins to accept connections

• before_server_stop: Executed before the server stops accepting connections

• after_server_stop: Executed after the server is stopped and all requests are complete

bp = Blueprint('my_blueprint')

@bp.listener('before_server_start')
async def setup_connection(app, loop):

2.8. Blueprints 17



Sanic Documentation, Release 0.5.4

global database
database = mysql.connect(host='127.0.0.1'...)

@bp.listener('after_server_stop')
async def close_connection(app, loop):

await database.close()

2.8.5 Use-case: API versioning

Blueprints can be very useful for API versioning, where one blueprint may point at /v1/<routes>, and another
pointing at /v2/<routes>.

When a blueprint is initialised, it can take an optional url_prefix argument, which will be prepended to all routes
defined on the blueprint. This feature can be used to implement our API versioning scheme.

# blueprints.py
from sanic.response import text
from sanic import Blueprint

blueprint_v1 = Blueprint('v1', url_prefix='/v1')
blueprint_v2 = Blueprint('v2', url_prefix='/v2')

@blueprint_v1.route('/')
async def api_v1_root(request):

return text('Welcome to version 1 of our documentation')

@blueprint_v2.route('/')
async def api_v2_root(request):

return text('Welcome to version 2 of our documentation')

When we register our blueprints on the app, the routes /v1 and /v2 will now point to the individual blueprints, which
allows the creation of sub-sites for each API version.

# main.py
from sanic import Sanic
from blueprints import blueprint_v1, blueprint_v2

app = Sanic(__name__)
app.blueprint(blueprint_v1, url_prefix='/v1')
app.blueprint(blueprint_v2, url_prefix='/v2')

app.run(host='0.0.0.0', port=8000, debug=True)

2.8.6 URL Building with url_for

If you wish to generate a URL for a route inside of a blueprint, remember that the endpoint name takes the format
<blueprint_name>.<handler_name>. For example:

@blueprint_v1.route('/')
async def root(request):

url = app.url_for('v1.post_handler', post_id=5) # --> '/v1/post/5'
return redirect(url)

@blueprint_v1.route('/post/<post_id>')

18 Chapter 2. Guides



Sanic Documentation, Release 0.5.4

async def post_handler(request, post_id):
return text('Post {} in Blueprint V1'.format(post_id))

2.9 Configuration

Any reasonably complex application will need configuration that is not baked into the actual code. Settings might be
different for different environments or installations.

2.9.1 Basics

Sanic holds the configuration in the config attribute of the application object. The configuration object is merely an
object that can be modified either using dot-notation or like a dictionary:

app = Sanic('myapp')
app.config.DB_NAME = 'appdb'
app.config.DB_USER = 'appuser'

Since the config object actually is a dictionary, you can use its update method in order to set several values at once:

db_settings = {
'DB_HOST': 'localhost',
'DB_NAME': 'appdb',
'DB_USER': 'appuser'

}
app.config.update(db_settings)

In general the convention is to only have UPPERCASE configuration parameters. The methods described below for
loading configuration only look for such uppercase parameters.

2.9.2 Loading Configuration

There are several ways how to load configuration.

From environment variables.

Any variables defined with the SANIC_ prefix will be applied to the sanic config. For example, setting
SANIC_REQUEST_TIMEOUT will be loaded by the application automatically. You can pass the load_vars
boolean to the Sanic constructor to override that:

app = Sanic(load_vars=False)

From an Object

If there are a lot of configuration values and they have sensible defaults it might be helpful to put them into a module:

import myapp.default_settings

app = Sanic('myapp')
app.config.from_object(myapp.default_settings)

2.9. Configuration 19



Sanic Documentation, Release 0.5.4

You could use a class or any other object as well.

From a File

Usually you will want to load configuration from a file that is not part of the distributed application. You can load
configuration from a file using from_file(/path/to/config_file). However, that requires the program to
know the path to the config file. So instead you can specify the location of the config file in an environment variable
and tell Sanic to use that to find the config file:

app = Sanic('myapp')
app.config.from_envvar('MYAPP_SETTINGS')

Then you can run your application with the MYAPP_SETTINGS environment variable set:

$ MYAPP_SETTINGS=/path/to/config_file python3 myapp.py
INFO: Goin' Fast @ http://0.0.0.0:8000

The config files are regular Python files which are executed in order to load them. This allows you to use arbitrary logic
for constructing the right configuration. Only uppercase varibales are added to the configuration. Most commonly the
configuration consists of simple key value pairs:

# config_file
DB_HOST = 'localhost'
DB_NAME = 'appdb'
DB_USER = 'appuser'

2.9.3 Builtin Configuration Values

Out of the box there are just a few predefined values which can be overwritten when creating the application.

| Variable | Default | Description |
| ----------------- | --------- | --------------------------------- |
| REQUEST_MAX_SIZE | 100000000 | How big a request may be (bytes) |
| REQUEST_TIMEOUT | 60 | How long a request can take (sec) |
| KEEP_ALIVE | True | Disables keep-alive when False |

2.10 Cookies

Cookies are pieces of data which persist inside a user’s browser. Sanic can both read and write cookies, which are
stored as key-value pairs.

2.10.1 Reading cookies

A user’s cookies can be accessed via the Request object’s cookies dictionary.

from sanic.response import text

@app.route("/cookie")
async def test(request):

test_cookie = request.cookies.get('test')
return text("Test cookie set to: {}".format(test_cookie))

20 Chapter 2. Guides



Sanic Documentation, Release 0.5.4

2.10.2 Writing cookies

When returning a response, cookies can be set on the Response object.

from sanic.response import text

@app.route("/cookie")
async def test(request):

response = text("There's a cookie up in this response")
response.cookies['test'] = 'It worked!'
response.cookies['test']['domain'] = '.gotta-go-fast.com'
response.cookies['test']['httponly'] = True
return response

2.10.3 Deleting cookies

Cookies can be removed semantically or explicitly.

from sanic.response import text

@app.route("/cookie")
async def test(request):

response = text("Time to eat some cookies muahaha")

# This cookie will be set to expire in 0 seconds
del response.cookies['kill_me']

# This cookie will self destruct in 5 seconds
response.cookies['short_life'] = 'Glad to be here'
response.cookies['short_life']['max-age'] = 5
del response.cookies['favorite_color']

# This cookie will remain unchanged
response.cookies['favorite_color'] = 'blue'
response.cookies['favorite_color'] = 'pink'
del response.cookies['favorite_color']

return response

Response cookies can be set like dictionary values and have the following parameters available:

• expires (datetime): The time for the cookie to expire on the client’s browser.

• path (string): The subset of URLs to which this cookie applies. Defaults to /.

• comment (string): A comment (metadata).

• domain (string): Specifies the domain for which the cookie is valid. An explicitly specified domain must
always start with a dot.

• max-age (number): Number of seconds the cookie should live for.

• secure (boolean): Specifies whether the cookie will only be sent via HTTPS.

• httponly (boolean): Specifies whether the cookie cannot be read by Javascript.

2.10. Cookies 21



Sanic Documentation, Release 0.5.4

2.11 Streaming

Sanic allows you to stream content to the client with the stream method. This method accepts a coroutine callback
which is passed a StreamingHTTPResponse object that is written to. A simple example is like follows:

from sanic import Sanic
from sanic.response import stream

app = Sanic(__name__)

@app.route("/")
async def test(request):

async def sample_streaming_fn(response):
response.write('foo,')
response.write('bar')

return stream(sample_streaming_fn, content_type='text/csv')

This is useful in situations where you want to stream content to the client that originates in an external service, like
a database. For example, you can stream database records to the client with the asynchronous cursor that asyncpg
provides:

@app.route("/")
async def index(request):

async def stream_from_db(response):
conn = await asyncpg.connect(database='test')
async with conn.transaction():

async for record in conn.cursor('SELECT generate_series(0, 10)'):
response.write(record[0])

return stream(stream_from_db)

2.12 Class-Based Views

Class-based views are simply classes which implement response behaviour to requests. They provide a way to com-
partmentalise handling of different HTTP request types at the same endpoint. Rather than defining and decorating
three different handler functions, one for each of an endpoint’s supported request type, the endpoint can be assigned a
class-based view.

2.12.1 Defining views

A class-based view should subclass HTTPMethodView. You can then implement class methods for every HTTP
request type you want to support. If a request is received that has no defined method, a 405: Method not
allowed response will be generated.

To register a class-based view on an endpoint, the app.add_route method is used. The first argument should be
the defined class with the method as_view invoked, and the second should be the URL endpoint.

The available methods are get, post, put, patch, and delete. A class using all these methods would look like
the following.

from sanic import Sanic
from sanic.views import HTTPMethodView
from sanic.response import text

22 Chapter 2. Guides



Sanic Documentation, Release 0.5.4

app = Sanic('some_name')

class SimpleView(HTTPMethodView):

def get(self, request):
return text('I am get method')

def post(self, request):
return text('I am post method')

def put(self, request):
return text('I am put method')

def patch(self, request):
return text('I am patch method')

def delete(self, request):
return text('I am delete method')

app.add_route(SimpleView.as_view(), '/')

You can also use async syntax.

from sanic import Sanic
from sanic.views import HTTPMethodView
from sanic.response import text

app = Sanic('some_name')

class SimpleAsyncView(HTTPMethodView):

async def get(self, request):
return text('I am async get method')

app.add_route(SimpleAsyncView.as_view(), '/')

2.12.2 URL parameters

If you need any URL parameters, as discussed in the routing guide, include them in the method definition.

class NameView(HTTPMethodView):

def get(self, request, name):
return text('Hello {}'.format(name))

app.add_route(NameView.as_view(), '/<name>')

2.12.3 Decorators

If you want to add any decorators to the class, you can set the decorators class variable. These will be applied to
the class when as_view is called.

2.12. Class-Based Views 23



Sanic Documentation, Release 0.5.4

class ViewWithDecorator(HTTPMethodView):
decorators = [some_decorator_here]

def get(self, request, name):
return text('Hello I have a decorator')

app.add_route(ViewWithDecorator.as_view(), '/url')

URL Building

If you wish to build a URL for an HTTPMethodView, remember that the class name will be the endpoint that you will
pass into url_for. For example:

@app.route('/')
def index(request):

url = app.url_for('SpecialClassView')
return redirect(url)

class SpecialClassView(HTTPMethodView):
def get(self, request):

return text('Hello from the Special Class View!')

app.add_route(SpecialClassView.as_view(), '/special_class_view')

2.12.4 Using CompositionView

As an alternative to the HTTPMethodView, you can use CompositionView to move handler functions outside of
the view class.

Handler functions for each supported HTTP method are defined elsewhere in the source, and then added to the view
using the CompositionView.addmethod. The first parameter is a list of HTTP methods to handle (e.g. ['GET',
'POST']), and the second is the handler function. The following example shows CompositionView usage with
both an external handler function and an inline lambda:

from sanic import Sanic
from sanic.views import CompositionView
from sanic.response import text

app = Sanic(__name__)

def get_handler(request):
return text('I am a get method')

view = CompositionView()
view.add(['GET'], get_handler)
view.add(['POST', 'PUT'], lambda request: text('I am a post/put method'))

# Use the new view to handle requests to the base URL
app.add_route(view, '/')

Note: currently you cannot build a URL for a CompositionView using url_for.

24 Chapter 2. Guides



Sanic Documentation, Release 0.5.4

2.13 Custom Protocols

Note: this is advanced usage, and most readers will not need such functionality.

You can change the behavior of Sanic’s protocol by specifying a custom protocol, which should be a subclass of
asyncio.protocol. This protocol can then be passed as the keyword argument protocol to the sanic.run method.

The constructor of the custom protocol class receives the following keyword arguments from Sanic.

• loop: an asyncio-compatible event loop.

• connections: a set to store protocol objects. When Sanic receives SIGINT or SIGTERM, it executes
protocol.close_if_idle for all protocol objects stored in this set.

• signal: a sanic.server.Signal object with the stopped attribute. When Sanic receives SIGINT or
SIGTERM, signal.stopped is assigned True.

• request_handler: a coroutine that takes a sanic.request.Request object and a response call-
back as arguments.

• error_handler: a sanic.exceptions.Handler which is called when exceptions are raised.

• request_timeout: the number of seconds before a request times out.

• request_max_size: an integer specifying the maximum size of a request, in bytes.

2.13.1 Example

An error occurs in the default protocol if a handler function does not return an HTTPResponse object.

By overriding the write_response protocol method, if a handler returns a string it will be converted to an
HTTPResponse object.

from sanic import Sanic
from sanic.server import HttpProtocol
from sanic.response import text

app = Sanic(__name__)

class CustomHttpProtocol(HttpProtocol):

def __init__(self, *, loop, request_handler, error_handler,
signal, connections, request_timeout, request_max_size):

super().__init__(
loop=loop, request_handler=request_handler,
error_handler=error_handler, signal=signal,
connections=connections, request_timeout=request_timeout,
request_max_size=request_max_size)

def write_response(self, response):
if isinstance(response, str):

response = text(response)
self.transport.write(

response.output(self.request.version)
)
self.transport.close()

@app.route('/')

2.13. Custom Protocols 25

https://docs.python.org/3/library/asyncio-protocol.html#protocol-classes


Sanic Documentation, Release 0.5.4

async def string(request):
return 'string'

@app.route('/1')
async def response(request):

return text('response')

app.run(host='0.0.0.0', port=8000, protocol=CustomHttpProtocol)

2.14 SSL Example

Optionally pass in an SSLContext:

import ssl
context = ssl.create_default_context(purpose=ssl.Purpose.CLIENT_AUTH)
context.load_cert_chain("/path/to/cert", keyfile="/path/to/keyfile")

app.run(host="0.0.0.0", port=8443, ssl=context)

You can also pass in the locations of a certificate and key as a dictionary:

ssl = {'cert': "/path/to/cert", 'key': "/path/to/keyfile"}
app.run(host="0.0.0.0", port=8443, ssl=ssl)

2.15 Logging

Sanic allows you to do different types of logging (access log, error log) on the requests based on the python3 logging
API. You should have some basic knowledge on python3 logging if you want do create a new configuration.

2.15.1 Quck Start

A simple example using default setting would be like this:

from sanic import Sanic
from sanic.config import LOGGING

# The default logging handlers are ['accessStream', 'errorStream']
# but we change it to use other handlers here for demo purpose
LOGGING['loggers']['network']['handlers'] = [

'accessTimedRotatingFile', 'errorTimedRotationgFile']

app = Sanic('test')

@app.route('/')
async def test(request):

return response.text('Hello World!')

if __name__ == "__main__":
app.run(log_config=LOGGING)

26 Chapter 2. Guides

https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html


Sanic Documentation, Release 0.5.4

After the program starts, it will log down all the information/requests in access.log and error.log in your working
directory.

And to close logging, simply assign log_config=None:

if __name__ == "__main__":
app.run(log_config=None)

This would skip calling logging functions when handling requests. And you could even do further in production to
gain extra speed:

if __name__ == "__main__":
# disable internal messages
app.run(debug=False, log_config=None)

2.15.2 Configuration

By default, log_config parameter is set to use sanic.config.LOGGING dictionary for configuration. The default con-
figuration provides several predefined handlers:

• internal (using logging.StreamHandler) For internal information console outputs.

• accessStream (using logging.StreamHandler) For requests information logging in console

• errorStream (using logging.StreamHandler) For error message and traceback logging in console.

• accessSysLog (using logging.handlers.SysLogHandler) For requests information logging to syslog. Currently
supports Windows (via localhost:514), Darwin (/var/run/syslog), Linux (/dev/log) and FreeBSD (/dev/log). You
would not be able to access this property if the directory doesn’t exist. (Notice that in Docker you have to enable
everything by yourself)

• errorSysLog (using logging.handlers.SysLogHandler) For error message and traceback logging to syslog.
Currently supports Windows (via localhost:514), Darwin (/var/run/syslog), Linux (/dev/log) and FreeBSD
(/dev/log). You would not be able to access this property if the directory doesn’t exist. (Notice that in Docker
you have to enable everything by yourself)

• accessTimedRotatingFile (using logging.handlers.TimedRotatingFileHandler) For requests information logging
to file with daily rotation support.

• errorTimedRotatingFile (using logging.handlers.TimedRotatingFileHandler) For error message and traceback
logging to file with daily rotation support.

And filters:

• accessFilter (using sanic.defaultFilter.DefaultFilter) The filter that allows only levels in DEBUG, INFO, and
NONE(0)

• errorFilter (using sanic.defaultFilter.DefaultFilter) The filter taht allows only levels in WARNING, ERROR, and
CRITICAL

There are two loggers used in sanic, and must be defined if you want to create your own logging configuration:

• sanic: Used to log internal messages.

• network: Used to log requests from network, and any information from those requests.

Log format:

In addition to default parameters provided by python (asctime, levelname, message), Sanic provides additional param-
eters for network logger with accessFilter:

2.15. Logging 27

https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/3/library/logging.handlers.html#logging.handlers.SysLogHandler
https://docs.python.org/3/library/logging.handlers.html#logging.handlers.SysLogHandler
https://docs.python.org/3/library/logging.handlers.html#logging.handlers.TimedRotatingFileHandler
https://docs.python.org/3/library/logging.handlers.html#logging.handlers.TimedRotatingFileHandler


Sanic Documentation, Release 0.5.4

• host (str) request.ip

• request (str) request.method + " " + request.url

• status (int) response.status

• byte (int) len(response.body)

The default access log format is

%(asctime)s - (%(name)s)[%(levelname)s][%(host)s]: %(request)s %(message)s %(status)d
→˓%(byte)d

2.16 Testing

Sanic endpoints can be tested locally using the test_client object, which depends on the additional aiohttp library.

The test_client exposes get, post, put, delete, patch, head and options methods for you to run
against your application. A simple example (using pytest) is like follows:

# Import the Sanic app, usually created with Sanic(__name__)
from external_server import app

def test_index_returns_200():
request, response = app.test_client.get('/')
assert response.status == 200

def test_index_put_not_allowed():
request, response = app.test_client.put('/')
assert response.status == 405

Internally, each time you call one of the test_client methods, the Sanic app is run at 127.0.01:42101 and
your test request is executed against your application, using aiohttp.

The test_client methods accept the following arguments and keyword arguments:

• uri (default '/') A string representing the URI to test.

• gather_request (default True) A boolean which determines whether the original request will be returned
by the function. If set to True, the return value is a tuple of (request, response), if False only the
response is returned.

• server_kwargs *(default {}) a dict of additional arguments to pass into app.run before the test request
is run.

• debug (default False) A boolean which determines whether to run the server in debug mode.

The function further takes the *request_args and **request_kwargs, which are passed directly to the aiohttp
ClientSession request.

For example, to supply data to a GET request, you would do the following:

def test_get_request_includes_data():
params = {'key1': 'value1', 'key2': 'value2'}
request, response = app.test_client.get('/', params=params)
assert request.args.get('key1') == 'value1'

And to supply data to a JSON POST request:

28 Chapter 2. Guides

https://aiohttp.readthedocs.io/en/stable/


Sanic Documentation, Release 0.5.4

def test_post_json_request_includes_data():
data = {'key1': 'value1', 'key2': 'value2'}
request, response = app.test_client.post('/', data=json.dumps(data))
assert request.json.get('key1') == 'value1'

More information about the available arguments to aiohttp can be found in the documentation for ClientSession.

2.17 Deploying

Deploying Sanic is made simple by the inbuilt webserver. After defining an instance of sanic.Sanic, we can call
the run method with the following keyword arguments:

• host (default "127.0.0.1"): Address to host the server on.

• port (default 8000): Port to host the server on.

• debug (default False): Enables debug output (slows server).

• ssl (default None): SSLContext for SSL encryption of worker(s).

• sock (default None): Socket for the server to accept connections from.

• workers (default 1): Number of worker processes to spawn.

• loop (default None): An asyncio-compatible event loop. If none is specified, Sanic creates its own event
loop.

• protocol (default HttpProtocol): Subclass of asyncio.protocol.

2.17.1 Workers

By default, Sanic listens in the main process using only one CPU core. To crank up the juice, just specify the number
of workers in the run arguments.

app.run(host='0.0.0.0', port=1337, workers=4)

Sanic will automatically spin up multiple processes and route traffic between them. We recommend as many workers
as you have available cores.

2.17.2 Running via command

If you like using command line arguments, you can launch a Sanic server by executing the module. For example, if
you initialized Sanic as app in a file named server.py, you could run the server like so:

python -m sanic server.app --host=0.0.0.0 --port=1337 --workers=4

With this way of running sanic, it is not necessary to invoke app.run in your Python file. If you do, make sure you
wrap it so that it only executes when directly run by the interpreter.

if __name__ == '__main__':
app.run(host='0.0.0.0', port=1337, workers=4)

2.17. Deploying 29

https://aiohttp.readthedocs.io/en/stable/client_reference.html#client-session
https://docs.python.org/3/library/asyncio-protocol.html#protocol-classes


Sanic Documentation, Release 0.5.4

2.17.3 Running via Gunicorn

Gunicorn ‘Green Unicorn’ is a WSGI HTTP Server for UNIX. It’s a pre-fork worker model ported from Ruby’s
Unicorn project.

In order to run Sanic application with Gunicorn, you need to use the special sanic.worker.GunicornWorker
for Gunicorn worker-class argument:

gunicorn --bind 0.0.0.0:1337 --worker-class sanic.worker.GunicornWorker

2.17.4 Asynchronous support

This is suitable if you need to share the sanic process with other applications, in particular the loop. However be
advised that this method does not support using multiple processes, and is not the preferred way to run the app in
general.

Here is an incomplete example (please see run_async.py in examples for something more practical):

server = app.create_server(host="0.0.0.0", port=8000)
loop = asyncio.get_event_loop()
task = asyncio.ensure_future(server)
loop.run_forever()

2.18 Extensions

A list of Sanic extensions created by the community.

• Sessions: Support for sessions. Allows using redis, memcache or an in memory store.

• CORS: A port of flask-cors.

• Compress: Allows you to easily gzip Sanic responses. A port of Flask-Compress.

• Jinja2: Support for Jinja2 template.

• OpenAPI/Swagger: OpenAPI support, plus a Swagger UI.

• Pagination: Simple pagination support.

• Motor: Simple motor wrapper.

• Sanic CRUD: CRUD REST API generation with peewee models.

• UserAgent: Add user_agent to request

• Limiter: Rate limiting for sanic.

• Sanic EnvConfig: Pull environment variables into your sanic config.

• Babel: Adds i18n/l10n support to Sanic applications with the help of the Babel library

• Dispatch: A dispatcher inspired by DispatcherMiddleware in werkzeug. Can act as a Sanic-to-WSGI
adapter.

• Sanic-OAuth: OAuth Library for connecting to & creating your own token providers.

• Sanic-nginx-docker-example: Simple and easy to use example of Sanic behined nginx using docker-compose.

• sanic-graphql: GraphQL integration with Sanic

• sanic-prometheus: Prometheus metrics for Sanic

30 Chapter 2. Guides

http://gunicorn.org/
https://github.com/subyraman/sanic_session
https://github.com/ashleysommer/sanic-cors
https://github.com/subyraman/sanic_compress
https://github.com/lixxu/sanic-jinja2
https://github.com/channelcat/sanic-openapi
https://github.com/lixxu/python-paginate
https://github.com/lixxu/sanic-motor
https://github.com/Typhon66/sanic_crud
https://github.com/lixxu/sanic-useragent
https://github.com/bohea/sanic-limiter
https://github.com/jamesstidard/sanic-envconfig
https://github.com/lixxu/sanic-babel
https://github.com/ashleysommer/sanic-dispatcher
https://github.com/Sniedes722/Sanic-OAuth
https://github.com/itielshwartz/sanic-nginx-docker-example
https://github.com/graphql-python/sanic-graphql
https://github.com/dkruchinin/sanic-prometheus


Sanic Documentation, Release 0.5.4

• Sanic-RestPlus: A port of Flask-RestPlus for Sanic. Full-featured REST API with SwaggerUI generation.

2.19 Contributing

Thank you for your interest! Sanic is always looking for contributors. If you don’t feel comfortable contributing code,
adding docstrings to the source files is very appreciated.

2.19.1 Installation

To develop on sanic (and mainly to just run the tests) it is highly recommend to install from sources.

So assume you have already cloned the repo and are in the working directory with a virtual environment already set
up, then run:

python setup.py develop && pip install -r requirements-dev.txt

2.19.2 Running tests

To run the tests for sanic it is recommended to use tox like so:

tox

See it’s that simple!

2.19.3 Pull requests!

So the pull request approval rules are pretty simple:

1. All pull requests must pass unit tests

• All pull requests must be reviewed and approved by at least one current collaborator on the project

• All pull requests must pass flake8 checks

• If you decide to remove/change anything from any common interface a deprecation message should accompany
it.

• If you implement a new feature you should have at least one unit test to accompany it.

2.19.4 Documentation

Sanic’s documentation is built using sphinx. Guides are written in Markdown and can be found in the docs folder,
while the module reference is automatically generated using sphinx-apidoc.

To generate the documentation from scratch:

sphinx-apidoc -fo docs/_api/ sanic
sphinx-build -b html docs docs/_build

The HTML documentation will be created in the docs/_build folder.

2.19. Contributing 31

https://github.com/ashleysommer/sanic-restplus
http://www.sphinx-doc.org/en/1.5.1/


Sanic Documentation, Release 0.5.4

2.19.5 Warning

One of the main goals of Sanic is speed. Code that lowers the performance of Sanic without significant gains in
usability, security, or features may not be merged. Please don’t let this intimidate you! If you have any concerns about
an idea, open an issue for discussion and help.

32 Chapter 2. Guides



CHAPTER 3

Module Documentation

• genindex

• search

33


	Sanic aspires to be simple
	Guides
	Getting Started
	Routing
	Request Data
	Response
	Static Files
	Exceptions
	Middleware And Listeners
	Blueprints
	Configuration
	Cookies
	Streaming
	Class-Based Views
	Custom Protocols
	SSL Example
	Logging
	Testing
	Deploying
	Extensions
	Contributing

	Module Documentation

